Search results for "radial glia"
showing 6 items of 6 documents
Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury.
2018
Radial glia (RG) are embryonic neural stem cells (NSCs) that produce neuroblasts and provide fibers that act as a scaffold for neuroblast migration during embryonic development. Although they normally disappear soon after birth, here we found that RG fibers can persist in injured neonatal mouse brains and act as a scaffold for postnatal ventricular-subventricular zone (V-SVZ)-derived neuroblasts that migrate to the lesion site. This injury-induced maintenance of RG fibers has a limited time window during post-natal development and promotes directional saltatory movement of neuroblasts via N-cadherin-mediated cell-cell contacts that promote RhoA activation. Transplanting an N-cadherin-contai…
Differential expression levels of Sox9 in early neocortical radial glial cells regulate the decision between stem cell maintenance and differentiation
2021
ABSTRACTRadial glial progenitor cells (RGCs) in the dorsal forebrain directly or indirectly produce excitatory projection neurons and macroglia of the neocortex. Recent evidence shows that the pool of RGCs is more heterogeneous than originally thought and that progenitor subpopulations can generate particular neuronal cell types. Using single cell RNA sequencing, we have studied gene expression patterns of two subtypes of RGCs that differ in their neurogenic behavior. One progenitor type rapidly produces postmitotic neurons, whereas the second progenitor remains relatively quiescence before generating neurons. We have identified candidate genes that are differentially expressed between thes…
The LIM Homeodomain Factor Lhx2 Is Required for Hypothalamic Tanycyte Specification and Differentiation
2014
Hypothalamic tanycytes, a radial glial-like ependymal cell population that expresses numerous genes selectively enriched in embryonic hypothalamic progenitors and adult neural stem cells, have recently been observed to serve as a source of adult-born neurons in the mammalian brain. The genetic mechanisms that regulate the specification and maintenance of tanycyte identity are unknown, but are critical for understanding how these cells can act as adult neural progenitor cells. We observe that LIM (Lin-11, Isl-1, Mec-3)-homeodomain geneLhx2is selectively expressed in hypothalamic progenitor cells and tanycytes. To test the function ofLhx2in tanycyte development, we used an intersectional gene…
Non-cell autonomous and non-catalytic activities of ATX in the developing brain
2015
The intricate formation of the cerebral cortex requires a well-coordinated series of events, which are regulated at the level of cell-autonomous and non-cell autonomous mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development are well-studied, the non cell-autonomous mechanisms remain poorly understood. A non-biased screen allowed us to identify Autotaxin (ATX) as a non cell-autonomous regulator of neural stem cell proliferation. ATX (also known as ENPP2) is best known to catalyze lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the localization and adhesion of neuronal progenitors in a cell autonomous and non-cell autonomous manner, …
Stick around: Cell–Cell Adhesion Molecules during Neocortical Development
2021
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell–cell adhesion molecules (C-CAMs), classi…
Dataset related to article "Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures"
2020
This dataset is related to the article entitled: Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures. This article is published in the Journal GLIA. Bres EE et al. Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures. Glia. 2020;1–33.